Задание 1.

Про действительные числа $a,\,b,\,c,\,d$ известно, что

$$ab = cd = 2025$$
, $a + c = b + d$, $a + b \neq c + d$.

Чему может быть равно значение a + b + c + d?

Задание 2.

Пусть n > 3 — натуральное число. Сколько существует способ выбрать два не пересекающихся прямоугольника внутри квадрата $n \times n$, идущих по линиям сетки? Прямоугольники пересекаются, если у них есть хотя бы одна общая внутренняя клетка или общая точка на границе.

В записи ответа допустимы только четыре арифметические операции, возведение в степень, взятие факториала и стандартных комбинаторных величин, там не должно содержаться многоточий и число использованных операций не должно зависеть от n.

Задание 3.

В остроугольном треугольнике ABC провели высоты AA_1 , BB_1 , CC_1 . Известно, что расстояние от точки A до BC и B_1C_1 равны 24 и 20 соответственно. Найдите периметр треугольника $A_1B_1C_1$.

Задание 4.

Множество натуральных чисел M назовём xopowum, если выполнены следующие два условия:

- (i) M содержит все натуральные числа, меньшие 2025;
- (ii) если $n \in M$, то в M лежат все члены арифметической прогрессии, первый член которой равен n, а разность равна n+1.

Верно ли, что для любого хорошего множества M существует такое натуральное число N, что в M лежат все натуральные числа, не меньшие N?

Задание 5.

Пусть S_n — множество всех возможных биекций множества $\{1, 2, \dots, n\}$ в себя.

Для любых $U, V, W \subset S_n$ обозначим через N_{UVW} количество способов выбрать $f \in U, g \in V, h \in W$ так, что f(g(h(x))) — тождественное отображение, т.е. для любого $k \in \{1, 2, ..., n\}$ выполнено f(g(h(k))) = k.

Пусть A, B, C таковы, что $A \cup B \cup C = S_n$ и $A \cap B = B \cap C = C \cap A = \emptyset$. Докажите, что $N_{ABC} = N_{CBA}$.